CHERN CLASSES OF VECTOR BUNDLES WITH HOLOMORPHIC CONNECTIONS ON A COMPLETE SMOOTH COMPLEX VARIETY

HÉLÈNE ESNAULT & V. SRINIVAS

Introduction

Let X be a complete smooth variety over the complex field C, X_{an} the associated complex manifold, and $\mathscr C$ a holomorphic vector bundle (locally free sheaf) on X_{an} with a holomorphic connection $\nabla\colon\mathscr C\to\mathscr C\otimes_{\mathscr C_{X_{an}}}\Omega^1_{X_{an}}$, where $\Omega^1_{X_{an}}$ is the sheaf of holomorphic 1-forms on X_{an} . It is well known that $\mathscr C$ has vanishing Chern classes in $H(X_{an,Q})$, so that the integral Chern classes are torsion.

Recall that the *i*th Deligne complex $\mathcal{D}(i) = \mathcal{D}(i)X_{an}$ is defined by

$$0 \to \mathbf{Z}(i) \to \mathscr{O}_{X_{an}} \xrightarrow{d} \Omega^1_{X_{an}} \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{i-1}_{X_{an}} \to 0,$$

where $\mathbf{Z}(i)$ is the subsheaf of abelian groups of the constant sheaf \mathbf{C} on X_{an} generated by $(2\pi\sqrt{-1})^i\mathbf{Z}$. The Deligne-Beilinson cohomology group (see [4] and the references given there) $H^j_{\mathscr{D}}(X_{an},i)$ is defined to be the j th hypercohomology of $\mathscr{D}(i)$. Then there is an exact sequence

$$0 \to J^i(X) \to H^{2i}_{\mathscr{D}}(X_{an}, i) \stackrel{\rho}{\to} Hg^i(X_{an}) \to 0,$$

where $Hg^i(X_{an}) \subset H^{2i}(X\,,\,\mathbf{Z}(i))$ is the subspace of classes of Hodge type $(i\,,\,i)$ (i.e., which maps to $F^iH^{2i}(X_{an}\,,\,\mathbf{C})$ in $H^{2i}(X_{an}\,,\,\mathbf{C})$, where F denotes the Hodge filtration), and $J^i(X)$ is the ith intermediate Jacobian of X, defined by

$$J^{i}(X) = H^{2i-1}(X_{an}, \mathbb{C})/\{\text{im}H^{2i-1}(X_{an}, \mathbb{Z}(i)) + F^{i}H^{2i-1}(X_{an}, \mathbb{C})\}.$$

The topological Chern class $c_i(\mathscr{C}) \in Hg^i(X_{an}) \subset H^{2i}(X_{an}, \mathbf{Z}(i))$ is the image under ρ of the "refined" Chern class with values in Deligne-Beilinson cohomology,

$$c_i^{\mathscr{D}}(\mathscr{C}) \in H^{2i}_{\mathscr{D}}(X_{an}, i).$$

If $\mathscr C$ has a connection ∇ , then $c_i(\mathscr C)$ is the torsion, so for some integer N>0, $Nc_i(\mathscr C)\in J^i(X)$.

For i = 1, $J^{1}(X) = \operatorname{Pic}^{0}(X)$, the Picard variety of X, and it is a consequence of Hodge theory and GAGA that every element of $\operatorname{Pic}^{0}(X)$ is the class of an invertible sheaf $\mathscr L$ with an integrable connection.

For i=2, Bloch [2] shows that the elements of $H^4_{\mathscr{D}}(X_{an}, 2)$, which are second Chern classes $c_2^{\mathscr{D}}(\mathscr{C})$ for locally free \mathscr{C} with an integrable connection, form a countable set. More precisely, he defines a countable subgroup $\Delta \subset C$ using the *dilogarithm* function, and shows that

$$Nc_2^{\mathscr{D}}(\mathscr{C}) \in \operatorname{im}(H^3(X_{an}, \Delta) \to H^3(X_{an}, \mathbb{C}) \to J^2(X)),$$

where N is the exponent of $c_2(\mathscr{C})$ in $H^4_{\mathscr{D}}(X_{an}, \mathbf{Z}(2))$. He also comments on the relationships between his results and a conjecture of Cheeger and Simons, in the light of which he conjectures that $c_i^{\mathscr{D}}(\mathscr{C})$ is the *torsion* for all i > 1 for any locally free sheaf \mathscr{C} with integrable connection.

Our aim in this note is to prove the following result.

Theorem. Let X be a smooth complete variety over \mathbb{C} . Then for any i > 1, the set

$$\{c_i^{\mathscr{D}}(\varepsilon) \in H_{\mathscr{D}}^{2i}(X_{an}, i) | \mathscr{C} \text{ has a holomorphic connection}\}$$

is countable.

Note that we do not require the connections to be integrable.

1. Proof of the Theorem

We begin by noting that by GAGA,

- (i) if $\mathscr C$ is a locally free $\mathscr O_{X_{an}}$ -module of finite rank (i.e., a holomorphic vector bundle), then there is a locally free $\mathscr O_X$ -module $\mathscr C_0$, unique up to isomorphism, such that ε is the associated analytic sheaf;
- (ii) if \mathscr{C} , \mathscr{C}_0 are as in (i), and ∇ is a holomorphic connection on \mathscr{C} , then there is an algebraic connection ∇_0 on \mathscr{C}_0 , unique up to isomorphism, such that the associated analytic connection on $(\mathscr{C}_0)_{an} \simeq \mathscr{C}$ is ∇ .

One way to see (ii) is as follows: if X is any smooth algebraic variety, and $\mathscr F$ a locally free $\mathscr O_X$ -module of finite rank, then consider the sheaf of algebraic 1-jets of the locally free $\mathscr O_X$ -module $\mathscr F$, defined by

$$\mathcal{J}^1(\mathcal{F}) = p_*^2(p_1^*\mathcal{F} \otimes_{\mathcal{O}_{X \times X}} \mathcal{O}_{X \times X}/\mathcal{J}_{\Delta}^2)\,,$$

where \mathscr{I}_{Δ} is the ideal sheaf of the diagonal on $X \times X$, and $p_i : X \times X \to X$

are the projections. The natural exact sequence (the jet sequence)

$$(*) 0 \to \mathscr{F} \otimes_{\mathscr{O}_{\mathbf{X}}} \Omega^1_{\mathbf{X}/\mathbf{C}} \to \mathscr{F}^1(\mathscr{F}) \to \mathscr{F} \to 0 \quad \dots$$

obtained as p_{2*} of the sequence by tensoring

$$0 \to \mathcal{I}_{\Lambda}/\mathcal{I}_{\Lambda}^2 \to \mathcal{O}_{X \times X}/\mathcal{I}_{\Lambda}^2 \to \mathcal{O}_{\Lambda} \to 0$$

with $p_1^* \mathcal{F}$, yields an extension class

$$A(\mathscr{F}) \in \operatorname{Ext}^1_X(\mathscr{F}, \mathscr{F} \otimes_{\mathscr{O}_X} \Omega^1_{X/\mathbb{C}}) \simeq H^1(X, \mathscr{C}nd_{\mathscr{O}_X}(\mathscr{F}) \otimes_{\mathscr{O}_X} \Omega^1_{X/\mathbb{C}}),$$

the Atiyah class of \mathcal{F} , whose vanishing is a necessary and sufficient condition for \mathcal{F} to have an algebraic connection (see [1]). In fact connections on \mathcal{F} are naturally in bijection with splittings of the jet sequence.

There is a corresponding Atiyah class for the existence of a holomorphic connection on \mathcal{F}_{an} , which lies in

$$\operatorname{H}^1(X_{an}\,,\,\operatorname{\mathscr{C}\!\mathit{nd}}_{\mathscr{O}_{X_{an}}}(\mathscr{F}_{an})\otimes_{\mathscr{O}_{X_{an}}}\Omega^1_{X_{an}})$$

where $\Omega^1_{X_{an}}$ is the sheaf of holomorphic 1-forms on X_{an} . Further, the jet sequence for \mathscr{F}_{an} is the sequence of holomorphic sheaves associated to the algebraic jet sequence, so $A(\mathscr{F}) \mapsto A(\mathscr{F}_{an})$ under the natural map on cohomology groups. By GAGA, if X is complete, then the map on cohomology is an isomorphism, and therefore in this case, if $A(\mathscr{F}_{an})$ vanishes, so does $A(\mathscr{F})$.

Hence, in (ii), we see that \mathscr{C}_0 has some algebraic connection ∇' . Now $\sigma = \nabla'_{an} - \nabla$ is a holomorphic section

$$\sigma \in \operatorname{H}^0(X_{\operatorname{an}}\,,\,\operatorname{\mathscr{C}nd}_{\operatorname{\mathscr{C}}_{X_{\operatorname{an}}}}(\operatorname{\mathscr{C}}) \otimes_{\operatorname{\mathscr{C}}_{X_{\operatorname{an}}}} \Omega^1_{X_{\operatorname{an}}}).$$

Again by GAGA, any holomorphic section σ as above is of the form $\sigma = \tau_{an}$, where τ is an algebraic section

$$au \in H^0(X\,,\,\mathcal{C}nd_{\mathscr{O}_X}(\mathscr{C}_0)\otimes_{\mathscr{O}_X}\Omega^1_{X/C})\,;$$

now $\nabla_0 = \nabla' - \tau$ is an algebraic connection on \mathscr{C}_0 such that $(\nabla_0)_{an} = \nabla$. The Atiyah class $A(\mathscr{F})$ is also related to the topological Chern classes $c_i(\mathscr{F}_{an}) \in Hg^i(X_{an}) \subset H^{2i}(X_{an}, \mathbf{Z}(i))$, as follows (see [1]-this relationship will be exploited in the proof of the Theorem). If X is any smooth algebraic variety over \mathbb{C} , and \mathscr{F} is locally free of finite rank on X, then the exterior product of differentials and composition of endomorphisms induces a map of sheaves

$$(\mathscr{C}nd_{\mathscr{O}_{X}}(\mathscr{F})\otimes_{\mathscr{O}_{X}}\Omega^{1}_{X/\mathbb{C}})^{\otimes i}\to \mathscr{C}nd_{\mathscr{O}_{X}}(\mathscr{F})\otimes_{\mathscr{O}_{X}}\Omega^{i}_{X/\mathbb{C}}\,,$$

and hence a map on cohomology

$$\psi_i: H^1(X, \mathscr{C}nd_{\mathscr{O}_X}(\mathscr{F}) \otimes_{\mathscr{O}_X} \Omega^1_{X/\mathbb{C}})^{\otimes i} \to H^i(X, \mathscr{C}nd_{\mathscr{O}_X}(\mathscr{F}) \otimes_{\mathscr{O}_X} \Omega^i_{X/\mathbb{C}}).$$

Let

$$\begin{split} M_{i}(\mathscr{F}) &= \psi_{i}(A(\mathscr{F})^{\otimes i}) = \psi_{i}(A(\mathscr{F}) \otimes \cdots \otimes A(\mathscr{F})) \\ &\in H^{i}(X, \mathscr{C}nd_{\mathscr{O}_{X}}(\mathscr{F}) \otimes_{\mathscr{O}_{X}} \Omega^{i}_{X/\mathbb{C}}), \end{split}$$

and let

$$N_i(\mathscr{F}) = \operatorname{tr}(M_i(\mathscr{F})) \in H^i(X, \Omega^i_{X/\mathbb{C}}),$$

where 'tr' is the map on cohomology induced by the trace on the sheaf of endomorphisms. The classes $N_i(\mathcal{F})$ are the *Newton classes* of \mathcal{F} , where $N_i(\mathcal{F})$ is a polynomial (with integral coefficients) in the Chern classes

$$c_j(\mathcal{F}) \in H^j(X, \Omega^j_{X/\mathbb{C}})$$

for $j \leq i$, such that $c_i(\mathcal{F})$ has a nonzero coefficient (in terms of the splitting principle, the Newton class N_i is the sum of the *i*th powers of the 'Chern roots'). Conversely, the *i*th Chern class is a polynomial (with rational coefficients) in the Newton class $N_i(\mathcal{F})$ for $j \leq i$.

In particular, if the Atiyah class $A(\mathcal{F})$ vanishes (i.e., if \mathcal{F} has an algebraic connection), the Chern classes with values in $H^i(X, \Omega^i_{Y/C})$ vanish.

If X is smooth and complete over \mathbb{C} , the topological Chern class $c_i(\mathscr{F}_{an})$ is compatible with the Chern class $c_i(\mathscr{F}) \in H^i(X, \Omega^i_{X/\mathbb{C}})$ in the following way: Hodge theory and GAGA yield maps (the latter two are isomorphisms)

$$Hg^{i}(X_{an}) \to F^{i}H^{2i}(X, \mathbb{C}) \cap \overline{F}^{i}H^{2i}(X, \mathbb{C}) \stackrel{\simeq}{\to} H^{i}(X_{an}, \Omega^{i}_{X_{an}})$$

$$\stackrel{\simeq}{\to} H^{i}(X, \Omega^{i}_{X/\mathbb{C}})$$

under which $c_i(\mathscr{F}_{an})$ maps to $c_i(\mathscr{F})$. Hence for smooth and complete X, $c_i(\mathscr{F}) = 0 \Leftrightarrow c_i(\mathscr{F}_{an})_{\mathbf{Q}} = 0$, where $c_i(\mathscr{F}_{an}) \mapsto c_i(\mathscr{F}_{an})_{\mathbf{Q}} \in H_g^i(X_{an}) \otimes \mathbf{Q} \subset H^{2i}(X_{an}, \mathbf{Q}(i))$.

More generally, if k is a field, $f: X \to S$ a smooth morphism of smooth k-varieties, and \mathscr{F} a locally free \mathscr{O}_X -module of finite rank, then one has the notion of an algebraic connection on \mathscr{F} relative to S, which is a map of sheaves

$$\mathscr{F} \to \mathscr{F} \otimes_{\mathscr{O}_X} \Omega^1_{X/S}$$

satisfying the Leibniz rule. There is a Atiyah class

$$A_{S}(\mathscr{F}) \in H^{1}(X, \mathscr{C}nd_{\mathscr{O}_{X}}(\mathscr{F}) \otimes_{\mathscr{O}_{X}} \Omega^{1}_{X/S}),$$

constructed using the ideal of the diagonal in $X \times_S X$, whose vanishing is equivalent to the existence of an algebraic connection on $\mathscr F$ relative to S. This is compatible with the 'global' Atiyah class $A_k(X)$ (the obstruction to the existence of a connection relative to $\operatorname{Spec} k$), in the sense that $A(\mathscr F) \mapsto A_S(\mathscr F)$ under the map induced by the sheaf map

$$\Omega^1_{X/k} \to \Omega^1_{X/S}$$
.

Further, it is compatible with base change $S' \to S$, where S' is a smooth k-variety.

The following result is the main step in the proof.

Proposition 1. (Rigidity). Let X be a smooth complete variety over C, and Y a smooth connected variety over C. Let $\mathscr C$ be a locally free $\mathscr O_{X\times Y}$ -module of finite rank on $X\times Y$ which has a connection relative to the projection $p_2\colon X\times Y\to Y$. Then for any i>1, the mapping

$$c(i): Y \to H^{2i}_{\mathscr{D}}(X_{an}, i), \qquad y \mapsto c_i^{\mathscr{D}}((\mathscr{C} \otimes \mathbf{C}(y))_{an}),$$

is constant.

Proof. To simplify the notation, we drop the subscript 'an.' Since any two points of Y lie on the image of a morphism from a connected smooth affine curve, we are reduced to the case where Y is an affine curve.

The map c(i) has the following alternative description. One has the 'algebraic' Chern class $c_i^{CH}(\epsilon) = \xi_i \in CH^i(X \times Y)$, the Chow group of codimension i algebraic cycles on $X \times Y$ (see [5]), for example. The Chern class $c_i^{CH}(\mathscr{C} \otimes \mathbf{C}(y)) \in CH^i(X)$ is the image of ξ_i under the natural map

$$i_{y}^{*} \colon CH^{i}(X \times Y) \to CH^{i}(X),$$

where $i_y: X \to Y \times Y$ is $i_y(x) = (x, y)$. The map c(i) is then given by

$$c(i)(y) = Cl_{\mathscr{D}}(i_{v}^{*}, \xi_{i}),$$

where

$$Cl_{\mathscr{D}}: CH^{i}(X) \to H^{2i}_{\mathscr{D}}(X, i)$$

is the cycle class map with values in Deligne-Beilinson cohomology. If we fix a base point $y_0 \in Y$, then the algebraic cycle $i_y^*(\xi_i) - i_{y_0}^*(\xi_i)$ is (co)homologous to 0 on X, and

$$c(i)(y)-c(i)(y_0)=Cl_{\mathcal{D}}(i_v^*(\xi_i))-Cl_{\mathcal{D}}(i_v^*(\xi_i))\in J^i(X)\,,$$

the *i*th intermediate Jacobian of X; one property of the cycle class in Deligne-Beilinson cohomology is that this element of $J^i(X)$ is the image of $i_{\nu}^*(\xi_i) - i_{\nu_0}^*(\xi_i)$ under the *Abel-Jacobi mapping*.

Let \overline{Y} be the projective smooth curve associated to Y, and let

$$\overline{\xi}_i \in CH^i(X \times \overline{Y})$$

be a preimage of ξ_i under the restriction map

$$CH^{i}(X \times \overline{Y}) \to CH^{i}(X \times Y).$$

Choose an algebraic cycle $\sum_j n_j Z_j$ representing ξ_i , and take $\overline{\xi}_i$ to be the class of $\Sigma_j n_j \overline{Z}_j$, where \overline{Z}_j is the Zariski closure Z_j . Then the Abel-Jacobi map gives a map from zero cycles of degree 0 on \overline{Y} to $J^i(X)$, by

$$\theta: \sum_j ((y_j) - (y_0)) \mapsto Cl_{\mathscr{D}}\left(\sum_j (i_y^*(\overline{\xi}_i) - i_{y_0}^*(\overline{\xi}_i))\right) \in J^i(X)\,,$$

whose value on $(y) - (y_0)$ is $c(i)(y) - c(i)(y_0)$ for $y \in Y$. The mapping θ clearly factors through the Jacobian of \overline{Y} , since $Cl_{\mathscr{D}}$ is well defined on rational equivalence classes, and so there is an induced mapping

$$[\overline{\xi}_i]: J(\overline{Y}) \to J^i(X).$$

We are reduced to proving this map is constant.

The mapping $[\overline{\xi}_i]:J(\overline{Y})\to J^i(X)$ induced by the class $\overline{\xi}_i\in CH^i(X\times Y)$ is related to the topological cycle class of $\overline{\xi}_i$ in $H^{2i}(X\times \overline{Y},\mathbf{Z}(i))$ in the following way (see Part One of the article [3] of Clemens and Griffiths). There is a Künneth component $\eta_i\in H^{2i-1}(X,\mathbf{Z}(i))\otimes H^1(\overline{Y},\mathbf{Z})$ of this topological cycle class (this Künneth component in fact depends only on ξ_i); its image in $H^{2i}(X\times \overline{Y},\mathbf{C})$ lies in $F^i\cap \overline{F}^i$, where F^i is the Hodge filtration on $H^{2i}(X\times \overline{Y},\mathbf{C})$. Under the isomorphism (Hodge theory)

$$F^i \cap \overline{F}^i \simeq H^i(X \times \overline{Y}, \Omega^i_{X \times \overline{Y}/C}),$$

 η_i is mapped to an element in the subspace

$$H^{i}(X\,,\,\Omega^{i-1}_{X/\mathbb{C}})\otimes_{\mathbb{C}}H^{0}(\overline{Y}\,,\,\Omega^{1}_{\overline{Y}})\oplus H^{i-1}(X\,,\,\Omega^{i}_{X/\mathbb{C}})\otimes_{\mathbb{C}}H^{1}(\overline{Y}\,,\,\mathcal{O}_{\overline{Y}})\,,$$

and these two summands are the complex conjugates of each other. Hence we may write image $(\eta_i) = \mu_i + \overline{\mu}_i$ with

$$\mu_i \in \operatorname{H}^i(X\,,\,\Omega^{i-1}_{X/\mathbb{C}}) \otimes_{\mathbb{C}} \operatorname{H}^0(\overline{Y}\,,\,\Omega^1_{\overline{Y}}) \simeq \operatorname{Hom}_{\mathbb{C}}(\operatorname{H}^1(\overline{Y}\,,\,\mathscr{O}_{\overline{Y}})\,,\,\operatorname{H}^i(X\,,\,\Omega^{i-1}_{X/\mathbb{C}}))\,,$$

and $\overline{\mu}_i$ is the complex conjugate of μ_i , since their sum is a real cohomology class. Similarly we may regard η_i as an element of

$$\operatorname{Hom}_{\mathbf{Z}}(H^{1}(\overline{Y}, \mathbf{Z}(1)), H^{2i-1}(X, \mathbf{Z}(i))).$$

This homomorphism is the mapping on lattices inducing the Abel-Jacobi map $[\overline{\xi}_i]:J(\overline{Y})\to J^{2i-1}(X)$; the mapping μ_i , composed with the inclusion

$$H^{i}(X, \Omega_{X/\mathbb{C}}^{i-1}) \simeq F^{i-1} \cap \overline{F}^{i} \hookrightarrow H^{2i-1}(X, \mathbb{C})/F^{i}H^{2i}(X, \mathbb{C}),$$

is the corresponding map of C-vector spaces.

The upshot of this is that we are reduced to proving that $\mu_i = 0$. Since $A_Y(\mathscr{C}) = 0$,

$$\begin{split} A(\mathscr{C}) \in \ker(H^1(X \times Y, \mathscr{C}nd(\mathscr{C}) \otimes_{\mathscr{O}_{X \times Y}} \Omega^1_{X \times Y/\mathbb{C}}) \\ & \to H^1(X \times Y, \mathscr{C}nd(\mathscr{C}) \otimes_{\mathscr{O}_{X \times Y}} \Omega^1_{X \times Y/Y})). \end{split}$$

Now the natural map

$$\Omega^1_{X\times Y/\mathbb{C}}\to \Omega^1_{X\times Y/Y}$$

induces an isomorphism

$$p_1^*\Omega_{X/\mathbb{C}}^1 \simeq \Omega_{X \times Y/Y}^1$$
,

and similarly there is an isomorphism

$$p_2^*\Omega_{Y/\mathbb{C}}^1\simeq\Omega_{X\times Y/Y}^1.$$

This leads to a direct sum decomposition

$$\Omega^1_{X\times Y}\simeq p_1^*\Omega^1_{X/\mathbb{C}}\oplus p_2^*\Omega^1_{Y/\mathbb{C}};$$

there is a similar decomposition on $X \times \overline{Y}$. This yields a direct sum decomposition

$$\begin{split} H^{1}(X\times Y\,,\,\mathscr{C}nd(\mathscr{C})\otimes_{\mathscr{O}_{X\times Y}}\Omega^{1}_{X\times Y/\mathbb{C}})\\ &=H^{1}(X\times Y\,,\,\mathscr{C}nd(\mathscr{C})\otimes_{\mathscr{O}_{X\times Y}}p_{1}^{*}\Omega^{1}_{X/\mathbb{C}})\\ &\oplus H^{1}(X\times Y\,,\,\mathscr{C}nd(\mathscr{C})\otimes_{\mathscr{O}_{X\times Y}}p_{2}^{*}\Omega^{1}_{Y/\mathbb{C}}) \end{split}$$

such that the Atiyah class $A(\mathscr{C})$ has components $A_Y(\mathscr{C}) = 0$ and $A_X(\mathscr{C})$ in the respective summands. Hence $A(\mathscr{C}) = A_X(\mathscr{C})$ lies in the subgroup

$$H^1(X \times Y, \mathscr{C}nd(\mathscr{C}) \otimes_{\mathscr{C}_{Y,\mathbf{C}}} p_2^*\Omega^1_{Y/\mathbf{C}}).$$

Since Y is a curve, $\Omega_{Y/C}^i = 0$ for i > 1. Thus

$$M_i(\mathcal{E}) \in \operatorname{H}^i(X \times Y \,,\, \mathcal{C}nd(\mathcal{C}) \otimes_{\mathscr{O}_{X \times Y}} \Omega^i_{X \times Y/\mathbb{C}})$$

lies in the subspace

$$H^{i}(X \times Y, \mathscr{C}nd(\mathscr{C}) \otimes_{\mathscr{C}_{Y \times Y}} p_{2}^{*}\Omega_{Y/\mathbb{C}}^{i}) = 0 \text{ for } i > 1.$$

Hence the Newton classes $N_i(\mathscr{C})$ vanish for i > 1. This implies that the Chern class

$$c_i(\mathscr{C}) \in H^i(X \times Y, \Omega^i_{X \times Y/\mathbb{C}})$$

is a rational multiple of $N_1(\mathscr{C})^i$, where

$$N_1(\mathscr{C}) \in H^1(X \times Y, \Omega^1_{X \times Y/\mathbb{C}}).$$

But again $N_1(\mathscr{C})$ lies in the subspace

$$H^1(X \times Y, p_2^*\Omega^1_{Y/\mathbb{C}}),$$

SO

$$N_1(\mathscr{C})^i \in H^i(X \times Y, p_2^* \Omega_{Y/C}^i) = 0 \text{ for } i > 1.$$

We observe that the restriction map

$$H^{i}(X \times \overline{Y}, \Omega^{i}_{X \times \overline{Y}/\mathbb{C}}) \to H^{i}(X \times Y, \Omega^{i}_{X \times Y/\mathbb{C}})$$

respects the decompositions

$$\begin{split} H^i(X\times\overline{Y},\,\Omega^i_{X\times\overline{Y}/\mathbb{C}}) &= H^i(X\times\overline{Y},\,p_1^*\Omega^i_{X/\mathbb{C}})\\ &\oplus H^i(X\times\overline{Y},\,p_1^*\Omega^{i-1}_{X/\mathbb{C}}\otimes_{\mathscr{O}_{X\times\overline{Y}}}\,p_2^*\Omega^1_{\overline{Y}/\mathbb{C}})\,,\\ H^i(X\times Y,\,\Omega^i_{X\times Y/\mathbb{C}}) &= H^i(X\times\overline{Y},\,p_1^*\Omega^i_{X/\mathbb{C}})\\ &\oplus H^i(X\times Y,\,p_1^*\Omega^{i-1}_{X/\mathbb{C}}\otimes_{\mathscr{O}_{X\times Y}}\,p_2^*\Omega^1_{Y/\mathbb{C}}). \end{split}$$

The summands

$$H^i(X\times\overline{Y}\,,\,p_1^*\Omega^i_{X/\mathbb{C}})\,,\ H^i(X\times\overline{Y}\,,\,p_1^*\Omega^{i-1}_{X/\mathbb{C}}\otimes_{\mathscr{O}_{X\times\overline{Y}}}p_2^*\Omega^{1}_{\overline{Y}/\mathbb{C}})$$

further decompose respectively as

$$H^i(X\,,\,\Omega^i_{X/\mathbb{C}})\otimes H^0(\overline{Y}\,,\,\mathcal{O}_{\overline{Y}})\oplus H^{i-1}(X\,,\,\Omega^i_{X/\mathbb{C}})\otimes H^1(\overline{Y}\,,\,\mathcal{O}_{\overline{Y}})\,,$$

$$H^i(X\,,\,\Omega^{i-1}_{X/{\bf C}}\otimes H^0(\overline{Y}\,,\,\Omega^1_{\overline{Y}/{\bf C}})\oplus H^{i-1}(X\,,\,\Omega^{i-1}_{X/{\bf C}})\otimes H^1(\overline{Y}\,,\,\Omega^1_{\overline{Y}}).$$

Thus

$$Cl(\overline{\xi}_i) \in H^i(X \times Y, \Omega^i_{X \times Y/\mathbb{C}})$$

is a sum of four components, two of which are μ_i and $\overline{\mu}_i$; in particular μ_i is the component in

$$H^{i}(X, \Omega_{X/C}^{i-1}) \otimes H^{0}(\overline{Y}, \Omega_{\overline{Y}/C}^{1}).$$

The restriction map

$$\boldsymbol{H}^{i}(\boldsymbol{X}\times\overline{Y}\,,\,\boldsymbol{p}_{1}^{*}\boldsymbol{\Omega}_{\boldsymbol{X}/\mathbf{C}}^{i-1}\otimes_{\mathscr{O}_{\boldsymbol{X}\times\overline{Y}}}\boldsymbol{p}_{2}^{*}\boldsymbol{\Omega}_{\overline{Y}/\mathbf{C}}^{1})\rightarrow\boldsymbol{H}^{i}(\boldsymbol{X}\times\boldsymbol{Y}\,,\,\boldsymbol{p}_{1}^{*}\boldsymbol{\Omega}_{\boldsymbol{X}/\mathbf{C}}^{i-1}\otimes\boldsymbol{p}_{2}^{*}\boldsymbol{\Omega}_{\boldsymbol{Y}/\mathbf{C}}^{1})$$

is injective on the summand

$$H^{i}(X, \Omega_{X/\mathbb{C}}^{i-1}) \otimes H^{0}(\overline{Y}, \Omega_{\overline{Y}/\mathbb{C}}^{1})$$

of the domain, and vanishes on the other summand. Since the restriction of $Cl(\overline{\xi}_i)$ vanishes for i > 1, μ_i restricts to 0 on $X \times Y$, i.e., $\mu_i = 0$, as desired. q.e.d.

We now give a short alternative proof using the construction of the Deligne-Beilinson cohomology $H^j_{\mathscr{D}}(i)$ of open smooth complex varieties (see [4]) but not using [3].

Alternative proof. As before, we reduce our proof to the case where Y is a smooth, connected affine curve, so that the Chern classes $c_i(\mathscr{C}) \in H^i(X \times Y, \Omega^i_{Y \times Y})$ vanish for $i \geq 2$. There is an exact sequence

$$0 \to H^{2i-1}(X \times Y, \mathbf{C}/Z(i))/F^{i}H^{2i-1}(X \times Y)$$

$$\to H^{2i}_{\mathscr{D}}(X \times Y, i) \to F^{i}_{\mathbf{Z}(i)}H^{2i}(X \times Y) \to 0,$$

where

 $F^j_{\mathbf{Z}(l)}H^i:=\{\omega\in F^jH^i \text{ such that image of }\omega \text{ vanishes in }H^i(C/\mathbf{Z}(l))\}$. One has an exact sequence

$$0 \to F_{\mathbf{Z}(i)}^{i+1} H^{2i}(X \times Y) \to F_{\mathbf{Z}(i)}^{i} H^{2i}(X \times Y) \to H^{i}(X \times \overline{Y}, \Omega_{X \times \overline{Y}}^{i}(\log D)),$$

where \overline{Y} is as above, $D = X \times \{\infty\}$ with $\{\infty\} := \overline{Y} - Y$, and

$$\begin{split} & \boldsymbol{H}^{i}(\boldsymbol{X} \times \overline{\boldsymbol{Y}} \,,\, \boldsymbol{\Omega}_{\boldsymbol{X} \times \overline{\boldsymbol{Y}}}^{i}(\log D)) \\ & = \boldsymbol{H}^{i}(\boldsymbol{X} \,,\, \boldsymbol{\Omega}_{\boldsymbol{X}}^{i}) \otimes \boldsymbol{H}^{0}(\overline{\boldsymbol{Y}} \,,\, \mathcal{O}_{\overline{\boldsymbol{Y}}}^{-}) \oplus \boldsymbol{H}^{i}(\boldsymbol{X} \,,\, \boldsymbol{\Omega}_{\boldsymbol{X}}^{i-1}) \otimes \boldsymbol{H}^{0}(\overline{\boldsymbol{Y}} \,,\, \boldsymbol{\Omega}_{\overline{\boldsymbol{Y}}}^{1}(\log\{\infty\})) \\ & \oplus \boldsymbol{H}^{i-1}(\boldsymbol{X} \,,\, \boldsymbol{\Omega}_{\boldsymbol{X}}^{i}) \otimes \boldsymbol{H}^{1}(\overline{\boldsymbol{Y}} \,,\, \mathcal{O}_{\overline{\boldsymbol{Y}}}^{-}). \end{split}$$

(Since Y is an affine curve, $H^1(\overline{Y}, \Omega^1_{\overline{Y}}(\log\{\infty\})) = 0$.) In this decomposition the image of $c_i^{\mathscr{B}}(\mathscr{C}) \in H^{2i}_{\mathscr{B}}(X \times Y, i)$ is written as $a_{i,i} + a_{i-1,i} + a_{i,i-1}$. From the vanishing image of $c_i^{\mathscr{B}}(\mathscr{C})$ in

$$\begin{split} H^{i}(X\times Y\,,\,\Omega^{i}_{X\times Y}) &= H^{i}(X\,,\,\Omega^{i}_{X})\otimes H^{0}(Y\,,\,\mathscr{O}_{Y})\\ &\oplus H^{i}(X\,,\,\Omega^{i-1}_{X})\otimes H^{0}(Y\,,\,\Omega^{1}_{Y})\,, \end{split}$$

and from the injectivities of $H^0(\overline{Y}, \mathscr{O}_{\overline{Y}})$ and $H^0(\overline{Y}, \Omega^1_{\overline{Y}}(\log\{\infty\}))$ respectively in $H^0(Y, \mathscr{O}_Y)$ and $H^0(Y, \Omega^1_Y)$, it follows that $a_{i,i} = a_{i-1,i} = 0$.

As $a_{i-1,i}=a_{i,i-1}$, where the dual space to $H^1(\overline{Y},\mathscr{O}_{\overline{Y}})$ is $H^0(\overline{Y},\Omega^1_{\overline{Y}})$ in $H^0(\overline{Y},\Omega^1_{\overline{Y}}(\log\{\infty\}))$, one obtains that $c_i^{\mathscr{D}}(\mathscr{C})$ maps to $F_{\mathbf{Z}(i)}^{i+1}H^{2i}(X\times Y)$. As $F_{\mathbf{Z}(i)}^{i+1}H^{2i}(X\times\overline{Y})=0$, one has $F_{\mathbf{Z}(i)}^{i+1}H^{2i}(X\times Y)\hookrightarrow F_{\mathbf{Z}(i-1)}^{i}H^{2i-1}(X\times\{\infty\})=0$ via the Gysin sequence. Therefore $c_i^{\mathscr{D}}(\mathscr{C})$ comes from a class $\gamma_i\in H^{2i-1}(X\times Y,\mathbb{C}/Z(i))$, with $\gamma_i=\alpha_i+\beta_i$, $\alpha_i\in H^{2i-1}(X,\mathbb{C}/Z(i))\otimes H^0(Y,\mathbb{Z})$, $\beta_i\in H^{2i-2}(X,\mathbb{C}/Z(i))\otimes H^1(Y,\mathbb{Z})$, and one has

$$\begin{split} c_i^{\mathscr{D}}(\mathscr{C}|_{X\times\{y\}}) &= c_i^{\mathscr{D}}(\mathscr{C})|_{X\times\{y\}} \text{ via the morphism} \\ &H_{\mathscr{D}}^{2i}(X\times Y\,,\,i) \to H_{\mathscr{D}}^{2i}(X\times\{y\}\,,\,i) \\ &= \mathrm{image}\; (\gamma_i|X\times\{y\}) \text{ via the morphism} \\ &H^{2i-1}(X\times Y\,,\,C/\mathbf{Z}(i)) \to H_{\mathscr{D}}^{2i}(X\times Y\,,\,i) \\ &= \mathrm{image}(\alpha_i|X\times\{y\}) \text{ via the morphism} \\ &H^{2i-1}(X\times\{y\}\,,\,\mathbf{C}/\mathbf{Z}(i)) \to H_{\mathscr{D}}^{2i}(X\times\{y\}\,,\,i). \end{split}$$

The class of α_i is constant as desired. q.e.d.

The proof of the Theorem is now completed by a routine argument. Let $k \subset \mathbf{C}$ be a countable algebraically closed field of definition for X. Let X_0 be a model of X over k, i.e., a smooth complete k-variety with $X_0 \times_{\operatorname{Spec} k} \operatorname{Spec} \mathbf{C} = X$. First note that, up to isomorphism, there is only a countable number of locally free \mathscr{O}_{X_0} -modules \mathscr{C}_0 which have an algebraic connection over k. This is because there are in fact only countably many locally free \mathscr{O}_{X_0} -modules up to isomorphism over k (cover X_0 by infinitely many affine $\operatorname{Spec} A_i$; there are only countably many projective A_i -modules up to isomorphism for each i, and only countably many possibilities for transition matrices).

Each locally free sheaf \mathscr{C}_0 defined over k and carrying a connection yields a locally free \mathscr{C}_X -module \mathscr{C} by extension of scalars. Clearly there are only countably many classes $c_i^{\mathscr{D}}(\mathscr{C})$ with \mathscr{C} of this special form.

By the rigidity result, it then suffices to prove that if \mathscr{F} is any locally free \mathscr{O}_X -module with a connection, there exist the following:

- (i) a connected smooth variety Y_0 defined over k, and the corresponding complex variety $Y=(Y_0)_{\mathbb{C}}$,
- (ii) a locally free $\mathscr{O}_{X_0 \times Y_0}$ -module \mathscr{G}_0 with a connection ∇_0 relative to Y_0 , and the corresponding objects \mathscr{G} , ∇ over \mathbb{C} , and
- (iii) a closed point $y \in Y$ such that $(\mathcal{G}, \nabla) \otimes \mathbf{C}(y)$ is isomorphic to the given locally free sheaf \mathcal{F} with its given connection.

Given this data, the Chern class $c_i^{\mathscr{D}}(\mathscr{F})$ equals $c_i^{\mathscr{D}}(\mathscr{C})$, where $y_0 \in Y_0$ is a closed point, regarded in a natural way as a C-point of Y, and $\mathscr{C} = \mathscr{G} \otimes \mathbf{C}(y_0)$. Then $\mathscr{C}_0 = \mathscr{G}_0 \otimes k(y_0)$ is a locally free sheaf defined over k with a connection, and $(\mathscr{C}_0)_{\mathbf{C}} = \mathscr{C}$. This would prove the Theorem.

To make the claimed construction, note that \mathscr{F} and its given connection are defined over a finitely generated k-subalgebra K of \mathbb{C} . Let \mathscr{F}_K and ∇_K be corresponding objects over K. Let Y_0 be a smooth k-variety with function field K; then X_K is the generic fiber of the proper and smooth morphism $X_0 \times_k Y_0 \to Y_0$. By replacing Y_0 by an open subset if necessary, we may further assume that there exists a locally free sheaf \mathscr{F}_0 on $X_0 \times Y_0$, with a connection relative to Y_0 , whose restriction to the generic fiber over Y_0 is \mathscr{F}_K , and with the connection ∇_K (to verify that the connection extends to an open set, one may think of it as a splitting of the jet sequence (*)). The given embedding $K \subset \mathbb{C}$ determines a closed point $y \in Y$, such that y maps to the generic point of Y_0 . If (\mathscr{F}, ∇) is the locally free sheaf with a connection relative to Y obtained on $X \times Y$, then $(\mathscr{F}, \nabla) \otimes \mathbb{C}(y) \simeq (\mathscr{F}_K, \nabla_K) \otimes_K \mathbb{C}$, which by choice is the sheaf \mathscr{F} with its given connection. Hence the proof is complete.

References

- [1] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957) 181-207.
- [2] S. Bloch, Applications of the dilogarithm function in algebraic K-theory and algebraic geometry, Proc. Internat. Sympos. Algebraic Geometry (Kyoto, 1977), Kinokuniya, Tokyo, 1978.
- [3] H. Clemens & P. A. Griffiths, The intermediate Jacobian of the cubic threefold Ann. of Math. 95 (1972) 281-356.
- [4] H. Esnault & E. Viehweg, Deligne-Beilinson cohomology, Beilinson's conjectures on special values of L-functions, (M. Rapaport, P. Schneider & N. Schappacher, eds.), Academic Press, New York, 1988.
- [5] W. Fulton, Intersection theory, Ergebnisse Math. Grenzgeb. (3), B. 2, Springer, Berlin, 1984.

Universität-GH-Essen
Tata Institute of Fundamental Research