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CHERN CLASSES OF VECTOR BUNDLES
WITH HOLOMORPHIC CONNECTIONS ON
A COMPLETE SMOOTH COMPLEX VARIETY

HELENE ESNAULT & V. SRINIVAS

Introduction

Let X be a complete smooth variety over the complex field C, X,
the associated complex manifold, and % a holomorphic vector bundle
(locally free sheaf) on X, with a holomorphic connection V: % —
174 ®ﬁ Q! X, ° where Q/l‘, is the sheaf of holomorphic 1-forms on X an
It is well known that & has vanishing Chern classes in H(X, n,Q) » SO that

the integral Chern classes are torsion.
Recall that the ith Deligne complex Z(i) = Z(i)X,

an

is defined by

0 — Z(i) = &y ig}( 4. 4al -,
where Z(i) is the subsheaf of abelian groups of the constant sheaf C on
X,, generated by ( 27z\/_ 1)'Z. The Deligne-Beilinson cohomology group

(see {4] and the references given there) HL (X (X, > 1) 1s defined to be the
Jj th hypercohomology of & (i). Then there is an exact sequence
0— J'(X) - Ho(X

an’

4 HE(X,)-0,

where Hg ( . CH 2’(X Z(i)) is the subspace of classes of Hodge type
(,D (ie. which maps to F'H*(X,,,C) in H'(X,,, C), where F de-
notes the Hodge filtration), and J i(X ) is the ith intermediate Jacobian
of X, defined by

2i—1 2i—1

J(X)=H (Xan> O}

an?’

(X,,, O/{imH* "X, , Z())+ F'H

an?

The topological Chern class ¢,(%) € Hg ( 2 C H2’(X , Z(1)) is the im-
age under p of the “refined” Chern class w1th values in Dehgne-Beilinson
cohomology,

C; (%)EH ( an> L)
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If £ has a connection V, then ¢,(%) is the torsion, so for some integer
N>0, N¢(%)eJ(X).

For i =1, J'YX) = PicO(X), the Picard variety of X, and it is a
consequence of Hodge theory and GAGA that every element of PicO(X )
is the class of an invertible sheaf .# with an integrable connection.

For i = 2, Bloch [2] shows that the elements of H_;(X an» 2), which
are second Chern classes cf (%) for locally free £ with an integrable
connection, form a countable set. More precisely, he defines a countable
subgroup A C C using the dilogarithm function, and shows that

N (%) e im(H*(X,,, A) - H'(X,,, C) — J*(X)),

an’

where N is the exponent of ¢,(%’) in H_%(Xan, Z(2)). He also comments
on the relationships between his results and a conjecture of Cheeger and
Simons, in the light of which he conjectures that c? (%) is the torsion for
all i > 1 for any locally free sheaf & with integrable connection.

Our aim in this note is to prove the following result.

Theorem. Let X be a smooth complete variety over C. Then for any
i>1, the set

{c?(s) € H;i (X,,» D| € has a holomorphic connection}

is countable.
Note that we do not require the connections to be integrable.

1. Proof of the Theorem

We begin by noting that by GAGA,

(i) if & is alocally free &, -module of finite rank (i.e., a holomorphic
vector bundle), then there is émlocally free &y-module %, unique up to
isomorphism, such that ¢ is the associated analytic sheaf;

(ii) if &, g, are as in (i), and V is a holomorphic connection on %,
then there is an algebraic connection V, on %, unique up to isomor-
phism, such that the associated analytic connection on (%), ~% is V.

One way to see (ii) is as follows: if X is any smooth algebraic variety,
and & alocally free & -module of finite rank, then consider the sheaf
of algebraic 1-jets of the locally free & -module ¥ , defined by

FUF) =D/ 0}F @5 Cyoxl ),

where .7, is the ideal sheaf of the diagonalon Xx X ,and p,: XxX — X
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are the projections. The natural exact sequence (the jet sequence)
* 1 1
* 0—><7®ﬁXQX/C—>f(<7)—>3‘r—>O
obtained as p,, of the sequence by tensoring
0 S/ = Orx) S = Gy =0

with p.# , yields an extension class

AF) €Bxty(F , F ©, Quo) = H' (X, End, (F) 8, Q)
the Atiyah class of & , whose vanishing is a necessary and sufficient condi-
tion for # to have an algebraic connection (see [1]). In fact connections
on % are naturally in bijection with splittings of the jet sequence.
There is a corresponding Atiyah class for the existence of a holomorphic
connection on %, , which lies in

an?
1 1
H (X %ndﬁx (Z,n) B, QXM)

an’

where Q}Y is the sheaf of holomorphic 1-forms on X, . Further, the

jet sequené'é for &, is the sequence of holomorphic sheaves associated to
the algebraic jet sequence, so A(F) — A(S,,) under the natural map on
cohomology groups. By GAGA, if X is complete, then the map on coho-
mology is an isomorphism, and therefore in this case, if A(#,,) vanishes,
so does A(¥).

Hence, in (ii), we see that % has some algebraic connection V' . Now
o =V, — V is a holomorphic section

o€ HO(X %ndﬁx (?) ®ﬁX‘m Q;”).

an?

Again by GAGA, any holomorphic section ¢ as above is of the form
6 =1,,, where 7 is an algebraic section

T€ HO(X, %ndﬁx (%) B, Q;,/C);

now V, = V' — 1 is an algebraic connection on &, such that (V),, = V.

The Atiyah class A(F) is also related to the topological Chern classes
c(Z,)€eHg (X,,)C HZ'(XM , Z(i)) , as follows (see [1]-this relationship
will be exploited in the proof of the Theorem). If X is any smooth al-
gebraic variety over C, and % is locally free of finite rank on X, then
the exterior product of differentials and composition of endomorphisms
induces a map of sheaves

(@nd, (5) 85 Qy)® - Fndy () 05 Lie
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and hence a map on cohomology
v H'(X, Endy (9) 0, Q0% — H(X, End, (F) 9, Qo).
Let
M(F) = y(A(F)®) = y(A(F) 8- ® A(F))
€H'(X,Bnd, (F) 85 Qyo),

and let . _
N(F) =u(M(F)) e H(X, Qi)
where ‘tr’ is the map on cohomology induced by the trace on the sheaf of

endomorphisms. The classes N,(#) are the Newton classes of # , where
N,(¥) is a polynomial (with integral coefficients) in the Chern classes

(7)€ H (X, Qo)

for j < i, such that ¢,(¥) has a nonzero coeflicient (in terms of the
splitting principle, the Newton class N, is the sum of the ith powers of
the ‘Chern roots’). Conversely, the i th Chern class is a polynomial (with
rational coefficients) in the Newton class Nj(? )y for j<i. :

In particular, if the Atiyah class 4(¥) vanishes (i.e., if .# has an alge-
braic connection), the Chern classes with values in H'(X, Q) vanish.

If X is smooth and complete over C, the topological Chern class
¢(#,,) is compatible with the Chern class ¢,(¥) € H'(X, Qyc in the
following way: Hodge theory and GAGA vyield maps (the latter two are
isomorphisms)

Hg'(x,)— FFH'(X,OnFH' (X,C) S H'(X,,, Q) )
S H(X, Q)
under which ¢,(¥,,) maps to ¢,(¥). Hence for smooth and complete
X, c(F) =0 & ¢(F,)g = 0, where (7)) = ¢,(F,,)q € Hy(X,,)

®Q C H¥(X,,, Q).

More generally, if k is a field, f : X — 5 a smooth morphism. of
smooth k-varieties, and .# a locally free &,-module of finite rank, then
one has the notion of an algebraic connection on & relative to .S, which
is a map of sheaves .

F - F B, Qy/s

satisfying the Leibniz rule. There is a Atiyah class
1
A(F) e H'(X, Bndy (F) @, Q)
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constructed using the ideal of the diagonal in X x X, whose vanishing is
equivalent to the existence of an algebraic connection on # relativeto S.
This is compatible with the ‘global’ Atiyah class 4, (X) (the obstruction
to the existence of a connection relative to Speck ), in the sense that
A(F) = Ag(¥) under the map induced by the sheaf map

le/k - Q,lv/s-
Further, it is compatible with base change S’ — S, where S’ is a smooth
k-variety.

The following result is the main step in the proof.

Proposition 1. (Rigidity). Let X be a smooth complete variety over
C, and Y a smooth connected variety over C. Let & be a locally free
Oy y-module of finite rank on X x Y which has a connection relative to
the projection p,: X x Y — Y . Then for any i > 1, the mapping

c(i): Y = Hy(X,,. 1), yoc (BoCH),),
is constant.

Proof. To simplify the notation, we drop the subscript ‘an.” Since any
two points of Y lie on the image of a morphism from a connected smooth
affine curve, we are reduced to the case where Y is an affine curve.

The map c¢(i) has the following alternative description. One has the
‘algebraic’ Chern class c (e) =¢ € CH' (X x Y), the Chow group of
codimension i algebraic cycles on X xY (see[5]), for example. The Chern
class cCH (Z @ C(y)) € CH'(X) is the image of ¢, under the natural map

iy: CH' (X>< Y) - CH' (X),
where [,: X - Y xY is i,(x) = (x,y). The map c(i) is then given by

(D)) = Cly (i}, &),
where ‘ i
1 .

Clg,: CHY(X) - Hg (X, i)
is the cycle class map with values in Deligne-Beilinson cohomology. If
we fix a base point y, € Y, then the algebraic cycle i;(él.) - i;o(éi) is
(co)homologous to 0 on X, and

(D)) — (D)) = Clgy (1,(E;)) = Cly (i(€)) € T'(X),

the ith intermediate Jacobian of X ; one property of the cycle class in

Deligne-Beilinson cohomology is that this element of J'(X) is the image
of i;(éi) - i;o(éi) under the Abel-Jacobi mapping.
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Let Y be the projective smooth curve associated to Y , and let
EeCH (X xY)
be a preimage of £, under the restriction map
CH' (X xY)— CH' (X x Y).

Choose an algebraic cycle Z nzZ; representing &, , and take Ei to be the

class of Zjn JZ i where Z is the Zariski closure Z iy Then the Abel-

Jacobi map gives a map from zero cycles of degree 0 on Y to J i(X ),
by

6: Z ) Clg, (}:o &) -1 & )) e J'(x),

whose value on (y)— (¥,) is c(i)(y) — c(i)(¥,) for y € Y. The mapping
0 clearly factors through the Jacobian of Y, since Cl,, is well defined on
rational equivalence classes, and so there is an induced mapping

[E1: J(T) = J'(X).
We are reduced to proving this map is constant.

The mapping [51.]. J(Y) — J'(X) induced by the class &f € CH (X X
Y) is related to the topological cycle class of 5,. in H? (X x Y, Z(i)) in
the following way (see Part One of the article [3] of Clemens and Griffiths).
There is a Kiinneth component 7, € H 2N x, Z(i))  H(Y , Z) of this
topological cycle class (this Kiinneth component in fact depends only on
¢, ); its image in Hzi(X x Y, C) lies in FinF , where F' is the Hodge
filtration on H 2"(X x Y, C). Under the isomorphism (Hodge theory)

FInF =« HX xY, Qy50)
n; is mapped to an element in the subspace
H'(X, Q) e H(Y, Q) 0 H (X, Qo) 8. H (Y, 55),
and these two summands are the complex conjugates of each other. Hence
we may write image (7,) = 4; + &; with

0, 1~ 1
w e H'(X, Qpo) @ H(Y , Qp) ~ Hom (H' (Y, &), H' (X, Q) ,

and #,; is the complex conjugate of y;, since their sum is a real cohomol-
ogy class. Similarly we may regard 7, as an element of

(X, Z(i))).

Hom, (H' (¥, Z(1)), H*
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This homomorphism is the mapping on lattices inducing the Abel-Jacobi
map [E]: J(Y)— J 2=1(X); the mapping Y; , composed with the inclu-
sion

i—1

H'(X,Q 0 =F ™ 'nF < B (X, 0)/F'H"(X, 0),

is the corresponding map of C-vector spaces.
The upshot of this is that we are reduced to proving that xz; =0.
Since 4,(%) =0,
1
X x Y/C)

1
X x Y/Y))‘

A(Z) eker(H' (X x Y, €nd(%) ®p  Q
— HY (X xY,%nd(%) ®y,

Now the natural map
1 1
QXxy/c - QXXY/Y
induces an isomorphism

* 1 1
Py~ Qv

and similarly there is an isomorphism

* ] 1
Py > Qy vy

This leads to a direct sum decomposition
1 * ~1 * ~ 1
Qyuy =D Lyc © 0,2y

there is a similar decomposition on X x Y. This yields a direct sum
decomposition

H' (X xY,&nd(%) ®s,., Q,I\’xy/c)

—H'(XxY, End(%) B, p;Q}Y/C)
@H (X xY,Znd(%) ®, 2;9y,¢)

such that the Atiyah class 4(%) has components 4,(%) =0 and 4,(%)
in the respective summands. Hence A(%) = 4,(%) lies in the subgroup

1 * 1
H (X xY,&nd(%) ®ﬁX”p2Q),/C).
Since Y is a curve, Q;,/C =0 for i > 1. Thus

M(&)e H' (X x Y, &nd(¥) ®p, Qyryrc)

xY
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lies in the subspace ;
: i * 7 .
H(XxY,&nd(%) By P,Qy,c) =0 fori> 1.

Hence the Newton classes N,(%) vanish for i > 1. This implies that the
Chern class . _ :
c(B)e H(X %Y, Qy,yic)

is a rational multiple of Nl(%)i , where
1 1
N(B)eH (X xY, Q. yc)
But again N, (%) lies in the subspace
* 1
H'(X xY,p;Qpc)

S0
N(®) e H (X x Y, p;Qy,c) =0 fori> 1.
We observe that the restriction map
H' (X xY, Qypic) = HX <Y, Qyp0)
respects the decompositions
H'(X xY,Qy,5,0) = H(X x Y, pjQy ()
j <5 * ~i—1 * 1
®H (X xY,pQc 8 _ 0;%c)
H (X xY,Qy pc) =H (X XY, pjQy )
j * i1 * ~1
®H(XxY, p1QtX/c Vg, . P2 % c)-
The summands
[ - * 1 1 = * ~i—1 * 1
H(X xY,pQyc), HXxY,pQyc 85 _20%c)
further decompose respectively as
i i 0~ i—1 ' -
H(X,Quo)oH (Y, 0n0H (X, Q) 0H (Y,5),

H'(X, Qe o H (Y, Qp )@ H (X, Qpe) 9 H' (Y, Qp).
Thus _ , .
CIl¢,) e H(XxY, ginY/C)

is a sum of four components, two of which are x; and %, ; in particular
; is the component in

i i— 0, % 1
H'(X, Qpe) @ H(Y, Q).
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The restriction map

i T *ni—l * 1 i * ~i—1 * ~1
H (X xY, 0 Qyc 8 Dy Q%,c) = H(X <Y, p Qe ®p,Qy0)

is injective on the summand
' i—1 0% l
H'(X, Qo H (Y, Qy,0)

of the domain, and vanishes on the other summand. Since the restriction

of CI(;) vanishes for i > 1, u; restrictsto0on X x Y, ie., u,=0,as
desired. q.e.d.

We now give a short alternative proof using the construction of the
Deligne-Beilinson cohomology ng(i) of open smooth complex varieties
(see [4]) but not using [3].

Alternative proof. As before, we reduce our proof to the case where
Y is a smooth, connected affine curve, so that the Chern classes ¢,(%) €

H i(X xY, QfoY) vanish for ; > 2. There is an exact sequence
0 H X xY,C/Z(i)/FH ' (X xY)
—~ Hy(X x Y, i) = Fp, H/(X x Y) = 0,
where
FZj(l)Hi ={we F/H' such that image of w vanishes in Hi(C/Z(l))} .
One has an exact sequence
0— Fpy H (X x ¥) — Fp, H'(X x Y) > H' (X x ¥, @y 7(log D)),
where Y is as above, D = X x {oo} with {00} :=Y — Y, and
H' (X x Y, Q' s(logD))
—H'X,Q)eH T,0) e H' (X, Q") e H' (T, Qi (log{oc}))
oH ™ '(X,Q) e H (Y, o).
(Since Y is an affine curve, H 1(7, Qly(log{oo})) = 0.) In this decomposi-
tion the image of c‘?(%) € Hg(XxY , ) 1s written as a; ;+a;,_ | ;+a; ;-
From the vanishing image of C;OZ(%) in
HXxY,Q, )=HWX,Q)eH(Y,&)
eH' (X, QYo H(Y,Q)),
and from the injectivities of H'(Y, &%) and H'(Y, Qly(log{oo})) respec-
tively in H(Y, &y) and H°(Y, Qy), it follows that a, ; = a;,_, , = 0.
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As al (i =@ ;_,» where the dual space to H WY, &) is H(Y, 91?) in

H’(Y, Q3(log{cc})) , one obtains that c'@(%) maps to F’“Hz’(X xY).
As F;f i H”(X x ¥) =0, one has Fy i, H(X x Y) — Fy,_ W H X x
{oo}) = 0 via the Gysin sequence. Therefore c;@(%) comes from a class
v, e H "X x Y, C/Z(i)), with 7, = o, + B,, o, € H' /(X , C/Z(i)) ®
HYY,Z), B, e H**(X,C/Z(i))® H'(Y, Z), and one has

=4a.

@ @ . .
c; (%|Xx{y}) = (%)L‘,x{ } via the morphism

H (X><Y 1)—>H (Xx{y} i)
= image (y;/X x {y}) via the morphism
H " X x Y, C/Z(i)) — HA(X x Y, i)
= image(a;|X x {y}) via the morphism
H* 7YX x {}, CJZ(i)) —» HA(X x {y}, D).

The class of «; is constant as desired. g.e.d.

The proof of the Theorem is now completed by a routine argument.
Let k& € C be a countable algebraically closed field of definition for X .
Let X, be a model of X over k, i.e., a smooth complete k-variety with
X, X $peck SpecC = X . First note that, up to isomorphism, there is only
a countable number of locally free &, -modules %, which have an alge-

braic connection over k. This is because there are in fact only countably
many locally free &, -modules up to isomorphism over k (cover X, by
infinitely many aﬁine Spec 4, ; there are only countably many projective
A;-modules up to 1somorphlsm for each i, and only countably many pos-
sibilities for transition matrices).

Each locally free sheaf %, defined over k and carrying a connection
yields a locally free & -module & by extension of scalars. Clearly there

are only countably many classes c?(% ) with & of this special form.
By the rigidity result, it then suffices to prove that if ¥ is any locally
free @y-module with a connection, there exist the following:

(1) a connected smooth variety Y, defined over k, and the corre-
sponding complex variety Y = (¥},
(ii) alocally free @’XoxYO-module %, with a connection V, relative to
Y, , and the corresponding objects &, V over C, and
(iii) a closed point y € Y such that (£, V) ® C(y) is isomorphic to
the given locally free sheaf # with its given connection.
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Given this data, the Chern class c? () equals cig(%) , where y, € Y,
is a closed point, regarded in a natural way as a C-pointof Y, and % =
¥ ®C(y,). Then &) = &, ® k(y,) is a locally free sheaf defined over k
with a connection, and (%), = & . This would prove the Theorem.

To make the claimed construction, note that % and its given connec-
tion are defined over a finitely generated k-subalgebra K of C. Let #
and V, be corresponding objects over K. Let Y, be a smooth k-variety
with function field K ; then X, is the generic fiber of the proper and
smooth morphism X, x, Y, — Y. By replacing Y, by an open subset
if necessary, we may further assume that there exists a locally free sheaf
%, on X, xY,, with a connection relative to Y, whose restriction to the
generic fiber over Y, is %, and with the connection V, (to verify that
the connection extends to an open set, one may think of it as a splitting of
the jet sequence (*)). The given embedding K C C determines a closed
point y € Y, such that y maps to the generic point of Y,. If (¥, V) is
the locally free sheaf with a connection relative to Y obtainedon X x Y,
then (¥, V) ® C(y) = (¥, Vi) ® C, which by choice is the sheaf &
with its given connection. Hence the proof is complete.
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